219 research outputs found

    Stable, ultra-relativistic electron beams by laser-wakefield acceleration

    Get PDF

    Stable, ultra-relativistic electron beams by laser-wakefield acceleration

    Get PDF

    Analytical model for the uncorrelated emittance evolution of externally injected beams in plasma-based accelerators

    Full text link
    This article introduces an analytical formalism for the calculation of the evolution of beam moments and the transverse emittance for beams which are externally injected into plasma wakefield accelerators. This formalism is then applied to two scenarios with increasing complexity - a single beam slice without energy gain and a single beam slice with energy gain, both propagating at a fixed co-moving position behind the driver. The obtained results are then compared to particle-in-cell (PIC) simulations as well as results obtained using an semi-analytic numerical approach (SANA). We find excellent agreement between results from the analytical model and from SANA and PIC

    Ponderomotive Injection in Plasma Wakefield Accelerators

    Full text link
    A new electron injection scheme is proposed in sub-relativistic plasma wakefield accelerators. A transverse laser ionizes a dopant gas and ponderomotively accelerates the released electrons in the direction of wake propagation. This process enables electron trapping in the wakefield even for a wakefield potential below the trapping threshold. We study the scheme theoretically and by means of particle-in-cell simulations to demonstrate high-quality beam formation and acceleration with sub-micrometer normalized emittances and sub-percent uncorrelated energy spreads

    Plasma Lenses for Relativistic Laser Beams in Laser Wakefield Accelerators

    Full text link
    Focusing petawatt-level laser beams to a variety of spot sizes for different applications is expensive in cost, labor and space. In this paper, we propose a plasma lens to flexibly resize the laser beam by utilizing the laser self-focusing effect. Using a fixed conventional focusing system to focus the laser a short distance in front of the plasma, we can adjust the effective laser beam waist within a certain range, as if a variety of focusing systems were used with the plasma lens acting as an adjustable eyepiece in a telescope. Such a setup is a powerful tool for laser wakefield accelerator experiments in state-of-art petawatt laser projects and allows for scanning focal spot parameters.Comment: 12 pages, 11 figure

    Plasma Lens Prototype Progress: Plasma Diagnostics And Particle Tracking For ILC e+ Source

    Full text link
    In recent years, the concept of high-gradient, symmetric focusing using active plasma lenses has regained notable attention owing to its potential benefits in terms of compactness and beam dynamics when juxtaposed with traditional focusing elements. An enticing application lies in the optical matching of extensively divergent positrons originating from the undulator-based ILC positron source, thereby enhancing the positron yield in subsequent accelerating structures. Through a collaboration between the University of Hamburg and DESY Hamburg, a scaled-down prototype for this purpose has been conceptualized and fabricated. In this presentation, we provide an overview of the ongoing progress in the development of this prototype. Furthermore, first insights into the development of a particle tracking code especially designed for plasma lenses with implemented Bayes optimization, are given.Comment: TALK PRESENTED AT THE INTERNATIONAL WORKSHOP ON FUTURE LINEAR COLLIDERS (LCWS2023), 15-19 MAY 2023. C23-05-15.3., LCWS23, SLAC, Plasma lens, ILC, 3 page

    Emittance-preserving acceleration of high-quality positron beams using warm plasma filaments

    Full text link
    Preserving the quality of positron beams in plasma-based accelerators, where wakefields are generated in electron filaments, is challenging. These wakefields are characterized by transversely non-linear focusing fields and non-uniform accelerating fields. However, a nonzero plasma temperature linearizes the transverse wakefield within the central region of the electron filament. In this study, we employ 3D particle-in-cell simulations with mesh refinement to demonstrate that beams with emittances on the order of tens of nanometers are contained within the linearized region of the transverse wakefield. This enables emittance preservation to one percent, while positron beams with the same charge and micrometer emittances, which sample the non-linear part of the transverse wakefield, experience a relative emittance growth of ten percent. Additionally, we observe a significant reduction in the growth rate of the slice energy spread for the tens of nanometers emittance beams in comparison to the micrometer emittance beams. The utilization of warm plasmas in conjunction with low-emittance beams opens up new avenues for enhancing the beam quality across various plasma-based positron acceleration approaches.Comment: To be submitted as a proceedings for the 6th European Advanced Accelerator Concepts worksho

    Generation of quasi continuous-wave electron beams in an L-band normal conducting pulsed RF injector for laboratory astrophysics experiments

    Full text link
    We report on an approach to produce quasi continuous-wave (cw) electron beams with an average beam current of milliamperes and a mean beam energy of a few MeV in a pulsed RF injector. Potential applications are in the planned laboratory astrophysics programs at DESY. The beam generation is based on field emission from a specially designed metallic field emitter. A quasi cw beam profile is formed over subsequent RF cycles at the resonance frequency of the gun cavity. This is realized by debunching in a cut disk structure accelerating cavity (booster) downstream of the gun. The peak and average beam currents can be tuned in beam dynamics simulations by adjusting operation conditions of the booster cavity. Optimization of the transverse beam size at specific positions (e.g., entrance of the plasma experiment) is performed by applying magnetic focusing fields provided by solenoids along the beam line. In this paper, the design of a microtip field emitter is introduced and characterized in electromagnetic field simulations in the gun cavity. A series of particle tracking simulations are conducted for multi-parametric optimization of the parameters of the produced quasi cw electron beams. The obtained results will be presented and discussed. In addition, measurements of the parasitic field emission (PFE) current (dark current) in the PITZ gun will be exemplarily shown to distinguish its order of magnitude from the produced beam current by the designed field emitter.Comment: 23 pages, 17 figure

    Controlled density-downramp injection in a beam-driven plasma wakefield accelerator

    Full text link
    This paper describes the utilization of beam-driven plasma wakefield acceleration to implement a high-quality plasma cathode via density-downramp injection in a short injector stage at the FLASHForward facility at DESY. Electron beams with charge of up to 105 pC and energy spread of a few percent were accelerated by a tunable effective accelerating field of up to 2.7 GV/m. The plasma cathode was operated drift-free with very high injection efficiency. Sources of jitter, the emittance and divergence of the resulting beam were investigated and modeled, as were strategies for performance improvements that would further increase the wide-ranging applications for a plasma cathode with the demonstrated operational stabilityComment: 11 pages, 9 figure
    • …
    corecore